モジュール:ET
ナビゲーションに移動
検索に移動
このモジュールについての説明文ページを モジュール:ET/doc に作成できます
local rat = require("Module:Rational")
local seq = require("Module:Sequence")
local p = {}
local common_suffix = {
["3/2"] = "f",
["2"] = "o",
["2/1"] = "o",
["3"] = "t",
["3/1"] = "t",
}
local common_ratio = {
["f"] = rat.new(3, 2),
["o"] = 2,
["t"] = 3,
["ϕ"] = (1 + math.sqrt(5)) / 2,
["n"] = math.exp(1),
["π"] = math.pi
}
-- create a ET structure <size>ed<equave>
function p.new(size, equave, suffix)
size = size or 12
equave = equave or 2
if suffix == nil then
local equave_n, equave_m = rat.as_pair(equave)
local equave_ratio = rat.as_ratio(equave)
equave_ratio = equave_ratio:lower()
suffix = "ed"
if common_suffix[equave_ratio] then
suffix = suffix .. common_suffix[equave_ratio]
elseif equave_m == 1 then
suffix = suffix .. equave_n
else
suffix = suffix .. equave_ratio
end
if equave_ratio == "2/1" then
suffix = "平均律"
end
end
return { size = size, equave = equave, suffix = suffix }
end
-- parse a ET structure
function p.parse(unparsed)
local size, equave = unparsed:match("^(%d+%.*%d*)(平均律)$")
if equave == nil then
return nil
else
return p.new(tonumber(size), 2, "平均律")
end
local size, suffix, equave = unparsed:match("^(%d+%.*%d*)([Ee][Dd](.+))$")
-- local size, suffix, equave = unparsed:match("^(%d+%.*%d*)([Cc]?[Ee][Dd]?[Tt]?(.*))$")
if equave == nil then
return nil
end
suffix = suffix:lower()
size = tonumber(size)
equave = common_ratio[equave] or rat.parse(equave)
if size == nil or equave == nil then
return nil
end
return p.new(size, equave, suffix)
end
-- construct a string representation for a ET structure
function p.as_string(et)
return et.size .. et.suffix
end
-- convert steps to a proper ratio (except that it is a float approximation)
function p.backslash_ratio(et, steps)
if et.size == 0 then
return 1
end
return rat.as_float(et.equave) ^ (steps / et.size)
end
function p.backslash_display(et, steps)
if et.size == 0 then
return 1
end
return steps .. p.backslash_modifier(et)
end
function p.backslash_modifier(et)
if not rat.eq(et.equave, 2) then
return "\\" .. et.size .. et.suffix
end
return "\\" .. et.size
end
-- convert steps to cents
function p.cents(et, steps)
if et.size == 0 then
return 0
end
steps = steps or 1
return 1200 * steps / et.size * math.log(rat.as_float(et.equave)) / math.log(2)
end
-- convert ratio to steps
-- ratio is a float!
-- towards is one of: -1 (floor), 0 (nearest), 1 (ceil)
function p.approximate(et, ratio, towards)
towards = towards or 0
if et.size == 0 then
return 0
end
local exact = math.log(ratio) / math.log(rat.as_float(et.equave)) * et.size
if towards < 0 then
return math.floor(exact)
elseif towards > 0 then
return math.ceil(exact)
else
return math.floor(exact + 0.5)
end
end
-- whether this ET tempers out the provided rational number
function p.tempers_out(et, ratio)
local t = 0
for factor, power in pairs(ratio) do
if type(factor) == "number" then
t = t + power * p.approximate(et, factor)
end
end
return t == 0
end
-- determine whether ET is highly composite
function p.is_highly_composite(et)
et.highly_composite = et.highly_composite or rat.is_highly_composite(et.size)
return et.highly_composite
end
-- determine whether ET's size could be within one of zeta function-related sequences
function p.is_zeta(et)
return seq.contains(seq.zeta_peak, et.size)
or seq.contains(seq.zeta_peak_integer, et.size)
or seq.contains(seq.zeta_integral, et.size)
or seq.contains(seq.zeta_gap, et.size)
end
-- describe why
function p.why_zeta(et)
local zeta_peak = seq.contains(seq.zeta_peak, et.size)
local zeta_peak_integer = seq.contains(seq.zeta_peak_integer, et.size)
local zeta_integral = seq.contains(seq.zeta_integral, et.size)
local zeta_gap = seq.contains(seq.zeta_gap, et.size)
local markers = {}
if zeta_peak then
table.insert(markers, "[[:en:The Riemann zeta function and tuning #Zeta peak edos|Zeta peak]]")
elseif zeta_peak == nil then
table.insert(markers, "[[:en:The Riemann zeta function and tuning #Zeta peak edos|Zeta peak?]]")
end
if zeta_peak_integer then
table.insert(markers, "[[:en:The Riemann zeta function and tuning #Zeta peak edos|Zeta peak integer]]")
elseif zeta_peak_integer == nil then
table.insert(markers, "[[:en:The Riemann zeta function and tuning #Zeta peak edos|Zeta peak integer?]]")
end
if zeta_integral then
table.insert(markers, "[[:en:The Riemann zeta function and tuning #Zeta integral edos|Zeta integral]]")
elseif zeta_integral == nil then
table.insert(markers, "[[:en:The Riemann zeta function and tuning #Zeta integral edos|Zeta integral?]]")
end
if zeta_gap then
table.insert(markers, "[[:en:The Riemann zeta function and tuning #Zeta gap edos|Zeta gap]]")
elseif zeta_gap == nil then
table.insert(markers, "[[:en:The Riemann zeta function and tuning #Zeta gap edos|Zeta gap?]]")
end
return table.concat(markers, "<br>")
end
return p